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Abstract
In this study, collective and tracer diffusion kinetics is addressed for the ternary
random alloy. A formal solution from the self-consistent theory of Moleko
et al (Moleko L K, Allnatt A R and Allnatt E L 1989 Phil. Mag. A 59 141) is
derived for collective diffusion and compared with the corresponding solution
for the binary random alloy. Tracer diffusion in the ternary alloy is treated
from the perspective of a special case of the quaternary random alloy. Results
from Monte Carlo calculations for tracer and collective correlation factors (for
the bcc ternary random alloy) are found to be in excellent agreement with this
self-consistent theory but in only semi-quantitative agreement with the earlier
theory of Manning (Manning J R 1971 Phys. Rev. B 4 1111).

1. Introduction

The random alloy model has long been useful for describing diffusion kinetics in concentrated
disordered alloys. Introduced first by Manning (1968, 1971), the random alloy model requires
that both the atomic components and the defect responsible for diffusion are randomly mixed.
Taking diffusion of vacancies in the ternary random alloy as a specific example, the randomly
mixed atomic components X1, X2, X3 exchange with the vacancies at frequencies w1, w2 and
w3 respectively and the vacancies are present in a vanishingly small concentration. Manning
(1968, 1971) derived simple expressions for the tracer correlation factors in terms of the
exchange frequencies. Related expressions were also developed for the tracer correlation
factors in terms of the tracer diffusivities themselves. These latter expressions are a valuable
alternative to obtaining the tracer correlation factors via analysis of the isotope effect.

Early Monte Carlo calculations for the binary random alloy implied that the Manning
formalism for describing the tracer correlation factors was remarkably accurate over a wide
range of exchange frequency ratios. But recent high-precision Monte Carlo work (Belova and
Murch 2000a) has made it clear that much of this success was in fact illusory, coming as a
result of specifying vacancy jump sequences that were much too short. There was in fact much
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better agreement with the results of the formalism of Holdsworth and Elliott (1986) (hereon
abbreviated to HE). That formalism used a method of decoupling a hierarchy of equations of
motion. However, almost exact agreement over a very wide range of the ratios of exchange
frequencies was obtained with the results from a self-consistent theory of Moleko et al (1989)
(hereon abbreviated to MAA). This theory makes use of a hierarchy of kinetic equations
for the time-dependent correlation functions from linear response theory. The decoupling
approximation used by MAA is similar in spirit to that used by HE but is adapted to the
different hierarchy of equations in the MAA theory.

The correlated parts of the Onsager phenomenological coefficients associated with atom
components present in more than tracer amounts are often called collective correlation factors.
Manning (1968, 1971) derived expressions for the collective correlation factors of a random
alloy with an arbitrary number of atom components, but HE did not extend their formalism to
address this problem. Equations determining the collective correlation factors for a random
alloy with an arbitrary number of components were obtained with the MAA self-consistent
theory but an explicit solution was given only for a binary alloy. The latter turned out
to be equivalent to that obtained by Manning for this system (Belova and Murch 2000b).
Recent results from high-precision Monte Carlo calculations for the binary random alloy are
in excellent agreement with these expressions over a very wide range of the ratios of the
exchange frequencies (Belova and Murch 2000b).

As a result of the findings summarized above and related ones addressing the vacancy
wind effect (Belova and Murch 2001) and the isotope effect (Belova and Murch 2000c),
it can be safely said that diffusion kinetics in the binary random alloy is very accurately
described by MAA. This is no guarantee of course that similar success of this theory can be
expected for alloys of more than two atomic components. In the present paper we address
the collective and tracer correlation factors for the ternary random alloy. In section 2 we
derive specific expressions for the ternary collective and tracer correlation factors based on the
general equation (48) presented in MAA. In section 3 we describe high-precision Monte Carlo
calculations of the collective and tracer correlation factors. This is followed in section 4 by a
presentation and comparison of the results.

2. Theory

2.1. Collective correlation factors

First we consider the ternary system: (X1, X2, X3) with atom–vacancy exchange frequencies
w1, w2 and w3, atomic compositions c1, c2, c3 and a vacancy site fraction cv which is vanishingly
small.

We follow the same notation as introduced in MAA, where the collective correlation
factors f ( j)

i j are expressed as

f ( j)
i j = δi j − 2wi U(V Xi : V X j )(cvc j )

−1 (1)

where δi j is the Krönecker delta. The U -functions obey relations which ensure that the
correlation functions are consistent with the Onsager reciprocal relations and with the sum
rule for the random alloy (Moleko and Allnatt 1988). These relations are U(V Xi : V X j ) =
U(V X j : V Xi ) and

U(V X1 : V X j ) + U(V X2 : V X j) + U(V X3 : V X j ) = 0. (2)

It follows that there are only three independent functions. We therefore introduce

g1 = U(V X1 : V X2) (=U(V X2 : V X1)), g2 = U(V X1 : V X3) (=U(V X3 : V X1)),

g3 = U(V X2 : V X3) (=U(V X3 : V X2)). (3)



Collective and tracer diffusion kinetics in the ternary random alloy 6899

For the ternary random alloy, equation (1) will then take the forms

f11 = 1 + 2w1(g1 + g2)(cvc1)
−1; f22 = 1 + 2w2(g1 + g3)(cvc2)

−1;
f33 = 1 + 2w3(g2 + g3)(cvc3)

−1; f (1)

12 = −2w2g1(cvc1)
−1;

f (1)

13 = −2w3g2(cvc1)
−1; f (2)

23 = −2w3g3(cvc2)
−1;

f (2)

12 = c1w1 f (1)

12 (c2w2)
−1; f (3)

13 = c1w1 f (1)

13 (c3w3)
−1;

f (3)

23 = c2w2 f (2)

23 (c3w3)
−1.

(4)

We assume that, in accord with all previous calculations for simple vacancy transport models,
the phenomenological coefficients Li j are all O(cv); we then find that all

(g1, g2, g3) = O(cv). (5)

The general equation in MAA contains additional functions which have a skew symmetry
property, U(Xi X j : V Xk) = −U(X j Xi : V Xk), and are related to the earlier functions by

U(V Xi : V X j ) = −U(X1 Xi : V X j) − U(X2 Xi : V X j ) − U(X3 Xi : V X j ). (6)

We introduce

y1 = U(X1 X2 : V X1), y2 = U(X1 X2 : V X2), y3 = U(X1 X2 : V X3). (7)

It follows from equations (5) and (6) that

U(V X1 : V X1) = y1 − U(X3 X1 : V X1) = O(cv). (8)

Consistent with this result, we accept the approximation U(X3 X1 : V X1) ≈ y1, with both
functions independent of cv . By means of analogous approximations for other functions of
this type, we find

yk = U(X1 X2 : V Xk) ≈ U(X2 X3 : V Xk) ≈ U(X3 X1 : V Xk) for k = 1, 2, 3. (9)

With these approximations and definitions in hand, we can write down a set of five equations
for five unknown variables which can be chosen from the six (g1, g2, g3; y1, y2, y3) in three
ways with respect to the choice of the first jump. (For U(V Xi : V Xk) and U(Xi X j : V Xk)

the first jump is V Xk . Note also that in each MAA equation all the functions have the same
first jump.) We can have (g1, g2, g3; y1, y2) as unknown variables (three equations for the first
jump V X1 and two equations for the first jump V X2):

M0cv y1(g − w3 F3) = c1c2cv + c2(g1 + g2)(2w1 + M0w2 F2) + c1g1(2w2 + M0w1 F1); (10)

M0cv y1(g − w1 F1) = −c3g1(2w2 + M0w3 F3) + c2g2(2w3 + M0w2 F2); (11)

M0cv y1(−g + w2 F2) = c1c3cv + c3(g1 + g2)(2w1 + M0w3 F3) + c1g2(2w3 + M0w1 F1); (12)

M0cv y2(−g + w3 F3) = c1c2cv + c2g1(2w1 + M0w2 F2) + c1(g1 + g3)(2w2 + M0w1 F1); (13)

M0cv y2(−g + w2 F2) = −c3g1(2w1 + M0w3 F3) + c1g3(2w3 + M0w1 F1). (14)

In the above equations we have used the following notation:

M0 = 2 f0(1 − f0)
−1; g = w1 f11 + w2 f22 + w3 f33;

F1 = f11 + f (1)
12 + f (1)

13 ; F2 = f22 + f (2)
12 + f (2)

23 ; F3 = f33 + f (3)
13 + f (3)

23 ,

where f0 is the geometric tracer correlation factor, which takes different values for different
crystal structures (and mechanisms); see, for example, the classic review by Le Claire (1970).
This system of equations (10)–(14) is a restatement for the ternary random alloy of the general
equation (48) in MAA.
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The functions g, F1, F2, F3 can all be expressed in terms of g1, g2 and g3 as follows:

g = w1 + w2 + w3 + 2(w2
1(g1 + g2)(cvc1)

−1 + w2
2(g1 + g3)(cvc3)

−1

+ w2
3(g2 + g3)(cvc3)

−1); (15)

F1 = 1 + 2(g1(w1 − w2) + g2(w1 − w3))(cvc1)
−1; (16)

F2 = 1 + 2(g1(w2 − w1) + g3(w2 − w3))(cvc2)
−1; (17)

F3 = 1 + 2(g2(w3 − w1) + g3(w3 − w2))(cvc3)
−1. (18)

It was shown in Murch and Qin (1994) that F1 has the meaning of the partial vacancy correlation
factor f 1

v (Manning 1968); similarly F2 and F3 correspond to f 2
v and f 3

v respectively.
We can see that in general the system of equations (10)–(14) is essentially nonlinear. We

can treat the system as a linear one with the coefficients playing the role of parameters. Then
we can derive the following very formal solution:

g1 = −c1c2c3cv(g − G)A(AB + AC + BC)−1; (19)

g2 = −c1c2c3cv(g − G)B(AB + AC + BC)−1; (20)

g3 = −c1c2c3cv(g − G)C(AB + AC + BC)−1, (21)

where

G = c1w1 F1 + c2w2 F2 + c3w3 F3; (22)

A = M0(c1G − c1w1 F1)(c2G − c2w2 F2) + c1c2(g − G)(M0G + 2w3); (23)

B = M0(c1G − c1w1 F1)(c3G − c3w3 F3) + c1c3(g − G)(M0G + 2w2); (24)

C = M0(c2G − c2w2 F2)(c3G − c3w3 F3) + c2c3(g − G)(M0G + 2w1). (25)

These relations (equations (19)–(21)) should be compared with the corresponding solution in
the case of the binary random alloy:

g1 = −c1c2cv(M0G + 2(w1c2 + w2c1))
−1, (26)

which can be derived as a limit of the first relation (equation (19)) when c3 → 0. In this limit,
A = O(cv), B = O(c3cv), C = O(c3cv). Then we have for g1

g1 = lim
c3→0

−c1c2cvc3(g − G)(B + C)−1, (27)

from equations (24), (25) we have that

lim
c3→0

(B + C)c−1
3 = lim

c3→0
(((c1 + c2)G − c1w1 F1 − c2w2 F2)(G − w3 F3))

+ (g − G)(M0G + 2(w1c2 + w2c1))

= 0 + (g − G)(M0G + 2(w1c2 + w2c1)) (28)

which together with equation (27) gives the final expression (26).
In the case of the binary random alloy it was possible to use this solution directly for

numerical calculations (Belova and Murch 2000b). Unfortunately, for the ternary random
alloy, in general, the amount of calculation required by making use of the formal solution
(equations (19)–(21)) is approximately equal to that required by making use of the original
system of equations (10)–(14). This is because despite the clear structure of the solution
equations (19)–(21), it still involves five unknown functions: A, B , C , g and G.

Manning’s (1971) solution for the collective correlation factors for the ternary random
alloy is as follows:

gM
1 = −cvc1c2(H + 2w3)(c1(H + 2w2)(H + 2w3)

+ c2(H + 2w1)(H + 2w3) + c3(H + 2w1)(H + 2w2))
−1 (29)



Collective and tracer diffusion kinetics in the ternary random alloy 6901

gM
2 = −cvc1c3(H + 2w2)(c1(H + 2w2)(H + 2w3)

+ c2(H + 2w1)(H + 2w3) + c3(H + 2w1)(H + 2w2))
−1 (30)

gM
3 = −cvc2c3(H + 2w1)(c1(H + 2w2)(H + 2w3)

+ c2(H + 2w1)(H + 2w3) + c3(H + 2w1)(H + 2w2))
−1 (31)

where H is a positive real solution to the equation

(M0 + 2)(c1w1(H + 2w2)(H + 2w3) + c2w2(H + 2w1)(H + 2w3)

+ c3w3(H + 2w1)(H + 2w2)) = (H + 2w1)(H + 2w2)(H + 2w3). (32)

As a point of interest, if we neglect the first terms of the functions A, B and C
(equations (23)–(25)) and use the relation H = M0G, then it is possible to show that the
MAA equations (19)–(21) reduce to Manning’s solution equations (29)–(32).

2.2. Tracer correlation factors

In order to address the tracer correlation factors for the ternary random alloy in the MAA
formalism, we need to consider the quaternary random alloy system (X1, X2, X3, X4) with
atom–vacancy exchange frequencies w1, w2, w3 and w4 and atomic compositions c1, c2, c3

and c4 and vanishingly small cv. Then we can use the following expression for the tracer
correlation factor f1 (and a similar method can be used in order to find f2 and f3):

fi = lim
c4→0

f44, (33)

where the subscript i denotes the type of tracer atom (X1, X2 or X3). We consider only the
situation after the first jump v − X4. Let us introduce functions h1, h2, h3 similarly to the
functions g1, g2 and g3 (equation (3)):

h1 = U(V X1 : V X4), h2 = U(V X2 : V X4), h3 = U(V X3 : V X4). (34)

Now, we have that

h = U(V X4 : V X4) = −h1 − h2 − h3, (35)

together with

f44 = 1 − 2w4h(cvc4)
−1. (36)

We will need additional functions of the type yi (of equation (7) type):

y4 = U(X2 X1 : V X4), y5 = U(X3 X1 : V X4), y6 = U(X3 X2 : V X4). (37)

Then, after making use of an asymptotical consideration with respect to the small quantity
cv (similar to that for the ternary random alloy case), we have that

U(X1 X4 : V X4) ≈ y4 + y5; U(X2 X4 : V X4) ≈ −y4 + y6;
U(X3 X4 : V X4) ≈ −y5 − y6.

(38)

Now we are in a position to analyse the system of equations (48) in MAA. Together with
the notation introduced above, we note that functions h1, h2 and h3 are O(cvc4). Then for the
limit c4 → 0 we will have only three essential equations for the three unknowns h, z1 = y4 + y5

and z2 = y4 − y6:

M0cv[z1(w1 f11 + w4 f44 − w3 f (3)

13 ) + z2(w3 f (3)

13 − w2 f (2)

12 )]

+ c1h(2w4 + M0w1 F1) = c1c4cv, (39)

M0cv[z1(−w3 f33 − w4 f44 + w1 f (1)

13 ) + z2(w3 f33 + w4 f44 − w2 f (2)

23 )]

+ c3h(2w4 + M0w3 F3) = c3c4cv, (40)

M0cv[z1(w1 f (1)

12 − w3 f (3)

23 ) + z2(−w2 f22 − w4 f44 + w3 f (3)

23 )]

+ c2h(2w4 + M0w2 F2) = c2c4cv, (41)
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where f44 is given by equation (32) and all the f ( j)
i j and Fi are given by relations

equations (4), (16)–(18). Therefore, the system of equations (10)–(14) (for the collective
correlation quantities) needs to be solved first before one can solve the system of equations for
the tracer correlation quantities.

It is clear that equations (39)–(41) can be used for all three tracer diffusion coefficients
(separately): if w4 = w1, then the solution to the system gives the tracer correlation factor f1

for the X1-tracers; if w4 = w2, then we obtain the tracer correlation factor f2 for the X2-tracers;
and if w4 = w3, then we obtain the tracer correlation factor f3 for the X3-tracers.

Manning’s (1971) solution for the tracer correlation effect for the ternary random alloy
can be given as follows:

hM = cvc4(H + 2w4)
−1, (42)

where the H -function is a real positive solution to equation (31).
The systems of equations (10)–(14) and equations (39)–(41) for the case when w1 = w2 =

w3 = w4 = 1 have the following trivial solutions:

g0
1 = −0.5cvc1c2(1 − f0); g0

2 = −0.5cvc1c3(1 − f0);
g0

3 = −0.5cvc2c3(1 − f0); h0 = 0.5cvc4(1 − f0);
y0

i = 0, for i = 1, . . . , 6.

(43)

It is suggested that these solutions are always used as a starting point in the usual procedure
for the solving a system of nonlinear equations.

3. Monte Carlo simulation

In our Monte Carlo computer simulations we made direct use of the following equations for
the collective correlation factors: (Allnatt 1982, Allnatt and Allnatt 1984):

fii = 〈�R2
i 〉(〈Ni 〉a2)−1, f (i)

i j = 〈�Ri �R j〉(〈Ni 〉a2)−1, (44)

where �Ri is the displacement of all atoms of species i in the system in time t , Ni is the
total number of jumps of atoms of type i in time t and a is the jump distance. Details of this
type of calculation can be found in Allnatt and Allnatt (1984) and Belova and Murch (2000b).
General details of Monte Carlo simulations of diffusion kinetics can be found in the review by
Murch (1984). The number of observations used in the present calculations was at least 20 000.
Determining the number of jumps in each observation turned out not to be without difficulties.
In the case of tracer diffusion in the binary random alloy it was found that at least 100 jumps
per atom (of the slower species) were required for convergence (Belova and Murch 2000a).
Failure to meet this requirement in early published Monte Carlo work resulted in the Manning
formalism appearing to be (falsely) superior to the HE and MAA approaches, as mentioned in
section 1. On the other hand, for collective diffusion in the binary alloy it was found that only
several hundred atom jumps in toto per observation were required for convergence (Belova and
Murch 2000b). In the ternary random alloy, we found that simply using several hundred jumps
in each observation, as used for the binary random alloy,does not give converged results, though
they do happen to agree quite closely with the Manning formalism. In order to get convergence
one needs about 100 jumps per atom in each observation. The collected evidence therefore is
that the Manning formalism is generally equivalent to short times in a simulation. In the binary
random alloy case short times suffice because the Manning, HE and MAA approaches all give
the same (very accurate) expressions for the collective correlation factors and convergence is
obtained very quickly. This is not the case for the ternary random alloy. As a result, far more
computational time is required for the ternary system compared with the binary.
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To obtain the tracer correlation factors we made use of the well known equation

fi = 〈�r2
i 〉(〈ni 〉a2)−1, (45)

where 〈ni 〉 is the average number of jumps of the atoms of type i and 〈r2
i 〉 is the mean squared

displacement of all the atoms of type i . For further details see Belova and Murch (2000a). We
averaged over the equivalent of at least 20 000 atoms. As was found for tracer diffusion in the
binary system, some 100 jumps for the slowest diffuser were required to obtain convergence
of the tracer correlation factors.

4. Simulation results

For the ternary alloy we present a cross-section of results for the collective correlation factors.
In figures 1, 2 we show as data points our Monte Carlo results for the collective correlation
factors as functions of c1 with c3 = 0.1, 0.3 and 0.6 for the exchange frequency ratios
w1/w2 = 10.0 and w1/w3 = 0.1. Corresponding results from Manning (1971) are shown as
broken curves and from MAA (as described in this study) as solid curves. It is immediately clear
that MAA results are consistently in excellent agreement with the Monte Carlo results whereas,
in general, the results from Manning’s formalism are only in semi-quantitative agreement. The
off-diagonal collective correlation factors especially are seen often to be in poor agreement
with Manning’s theory. Further extensive Monte Carlo data at other compositions, not shown
here for brevity, are in similar agreement with the self-consistent theory.

In figure 3 we show as data points corresponding Monte Carlo results for the tracer
correlation factors as functions of c1 with c3 = 0.1, 0.3 and 0.6 for exchange frequency ratios
w1/w2 = 10.0 and w1/w3 = 0.1. Results from Manning (1971) are shown as broken curves
and those from MAA (as described in this study) as solid curves. Similar to the case for
the collective correlation factors presented above, it is immediately clear that MAA results
are in excellent agreement with the Monte Carlo results whereas the results from Manning’s
formalism remain only in semi-quantitative agreement. Again, further extensive Monte Carlo
data, not shown here for brevity, are in similar agreement with MAA data.

Accordingly, it is quite clear that for the ternary random alloy the MAA formalism shows
a similar level of agreement with Monte Carlo data as seen earlier for the binary random alloy
and that the MAA one is definitely the formalism of choice for describing diffusion kinetics
in those disordered binary and ternary alloy systems that can be reasonably described by the
random alloy model.

5. Conclusions

In this study, collective and tracer diffusion kinetics has been addressed for the ternary random
alloy. A formal solution from the MAA self-consistent theory has been derived for collective
diffusion and compared with the corresponding solution for the binary random alloy. It was
shown that the Manning (1971) result can be found from the MAA theory by neglecting certain
terms in the expressions. Tracer diffusion in the ternary alloy was treated from the perspective
of a special case of the MAA description of the quaternary random alloy. Results from Monte
Carlo calculations for tracer and collective correlation factors (for the bcc ternary random alloy)
were found to be in excellent agreement with the MAA theory but in only semi-quantitative
agreement with the Manning (1971) theory.

Use of the MAA formalism to analyse experimental interdiffusion data is considerably
more complicated than use of the Manning (1971) formalism. Use of both of these formalisms
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Figure 1. The diagonal collective correlation factors f11, f22 and f33 as functions of c1 at
w1/w2 = 10.0 and w1/w3 = 0.1. (a) c3 = 0.1; (b) c3 = 0.3; and (c) c3 = 0.6. Data points:
Monte Carlo results; solid curves: MAA theory, equations (18)–(20); dashed curves: Manning
(1971) theory, equations (28)–(30).
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(a)

(b)

(c)

Figure 2. The off-diagonal collective correlation factors f (1)
12 , f (3)

13 and f (2)
23 as functions of c1 at

w1/w2 = 10.0 and w1/w3 = 0.1. (a) c3 = 0.1; (b) c3 = 0.3; and (c) c3 = 0.6. Data points:
Monte Carlo results; solid curves: MAA theory, equations (18)–(20); dashed curves: Manning
(1971) theory, equations (28)–(30).
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(a)

(b)

(c)

Figure 3. The tracer correlation factors f1, f2 and f3 as functions of c1 at w1/w2 = 10.0 and
w1/w3 = 0.1. (a) c3 = 0.1; (b) c3 = 0.3; and (c) c3 = 0.6. Data points: Monte Carlo results; solid
curves: MAA theory, equations (38)–(40); dashed curves: Manning (1971) theory, equations (41),
(42).
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to analyse interdiffusion data on the Fe–Ni–Cr system will be published shortly (Belova and
Murch 2002).
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